
Financial Services Grid
Computing on AWS

First Published January 2015

Updated August 24, 2021

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Overview .. 1

Introduction .. 2

Grid computing on AWS .. 5

Compute and networking ... 6

Storage and data sharing ... 15

Data management and transfer ... 22

Operations and management .. 23

Task scheduling and infrastructure orchestration ... 26

Security and compliance .. 30

Migration approaches, patterns, and anti-patterns ... 32

Conclusion ... 35

Contributors ... 36

Further reading .. 36

Glossary of terms .. 37

Document versions .. 39

Abstract

Financial services organizations rely on high performance computing (HPC)

infrastructure grids to calculate risk, value portfolios, and provide reports to their internal

control functions and external regulators. The scale, cost, and complexity of this

infrastructure is an increasing challenge. Amazon Web Services (AWS) provides a

number of services that enable these customers to surpass their current capabilities by

delivering results quickly and at a lower cost than on-premises resources.

The intended audience for this paper includes grid computing managers, architects, and

engineers within financial services organizations who want to improve their service. It

describes the key AWS services to consider, some best practices, and includes relevant

reference architecture diagrams.

Amazon Web Services Financial Services Grid Computing on AWS

 Page 1

Overview

High performance computing (HPC) in the financial services industry is an ongoing

challenge because of the pressures from ever-increasing computational demand across

retail, commercial, and investment groups, combined with growing cost and capital

constraints. The traditional, on-premises approaches to solving these problems have

evolved from centralized, monolithic solutions, to business-aligned clusters of

commodity hardware, to modern, multi-tenant grid architectures with centralized

schedulers that manage disparate compute capacity.

Regulators and large financial institutions increasingly accept hyperscale cloud

providers, which resulted in significant interest in how to best leverage new capabilities

while ensuring good governance and cost controls. Cloud concepts such as capacity on

demand and pay as you go pricing models offer new opportunities to teams who run

HPC platforms.

Historically, the challenge has been to manage a fixed set of on-premises resources,

while maximizing utilization and minimizing queuing times. In a cloud-based model with

capacity that is effectively unconstrained, the focus shifts away from managing and

throttling demand, and towards optimizing supply. With this model, decisions become

more granular and tailored to each customer, and focus on how fast and at what cost,

with the ability to make adjustments as required by the business. With this basically

limitless capacity, concepts such as queuing and prioritization become irrelevant, as

clients are able to submit calculation requests and have them serviced immediately.

This also results in upstream consumers increasingly expecting and demanding near

instantaneous processing of their workloads at any scale.

Initial cloud migrations of HPC platforms are often seen as extensions or evolutions of

on-premises grid implementations. However, forward-looking institutions are

experimenting with the ever-expanding ecosystem of capabilities enabled by AWS.

Some emerging themes include refreshing financial models to run on open-source Linux

based operating systems, and exploring the performance benefits of the latest Arm

Neoverse N1 central processing units (CPUs) through AWS Graviton2. Amazon

SageMaker increasingly democratizes the use of artificial intelligence/machine learning

(AI/ML) techniques, and customers are looking to these tools to enable accelerated

development of predictive risk models.

For data-heavy calculations, Amazon EMR offers a fully managed, industry-leading

cloud big data platform based on standard tooling using directed acyclic graph

https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/emr
https://en.wikipedia.org/wiki/Directed_acyclic_graph

Amazon Web Services Financial Services Grid Computing on AWS

 Page 2

structures. This topic is explored further in the blog post How to improve FRTB’s

Internal Model Approach implementation using Apache Spark and Amazon EMR.

As HPC environments move to the cloud, the applications that are associated with them

start to migrate too. Risk management systems which drive compute grids quickly

become a bottleneck when the downstream HPC platform is unconstrained. By

migrating these applications with the compute grid, the applications benefit from the

elasticity that the cloud provides. In turn, data sources such as market and static data

are sourced natively from within the cloud, from the same providers that customers work

with today through services such as AWS Data Exchange.

Many of the building blocks required for fully serverless risk management and reporting

solutions already exist today within AWS, with services like AWS Lambda for serverless

compute and AWS Step Functions to coordinate them. As financial institutions become

increasingly familiar and comfortable with these services, it’s likely that serverless

patterns will become the predominant HPC architectures of the future.

Introduction

In general, traditional HPC systems are used to solve complex mathematical problems

that require thousands or even millions of CPU hours. These systems are commonly

used in academic institutions, biotech, and engineering firms. In banking organizations,

HPC systems are used to quantify the risk of given trades or portfolios, which enables

traders to develop effective hedging strategies, price trades, and report positions to their

internal control functions and ultimately to external regulators. Insurance companies

leverage HPC systems in a similar way for actuarial modeling and in support of their

own regulatory requirements.

Unpredictable global events, seasonal variation, and regulatory reporting commitments

contribute to a mixture of demands on HPC platforms. This includes short, latency-

sensitive intraday pricing tasks, near real-time risk measures calculated in response to

changing market conditions, or large overnight batch workloads and back-testing to

measure the efficacy of new models to historic events. Combined, these workloads can

generate hundreds of millions of tasks per day, with a significant proportion running for

less than a second.

Because of the regulatory landscape, demand for these calculations continues to

outpace the progress of Moore’s law. Regulations such as the Fundamental Review of

the Trading Book (FRTB) and IFRS 17 require even more analysis, with some

customers estimating between 40% and 1000% increases in demand as a result. In turn

https://aws.amazon.com/blogs/industries/how-to-improve-frtbs-internal-model-approach-implementation-using-apache-spark-and-amazon-emr/
https://aws.amazon.com/blogs/industries/how-to-improve-frtbs-internal-model-approach-implementation-using-apache-spark-and-amazon-emr/
https://aws.amazon.com/data-exchange/
https://aws.amazon.com/lambda/
https://aws.amazon.com/step-functions/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 3

financial services organizations continue to grow their grid computing platforms and

increasingly wrestle with the costs associated with purchasing and managing this

infrastructure. The blog post How cloud increases flexibility of trading risk infrastructure

for FRTB compliance explores this topic in greater detail, discussing the challenges of

data, compute, and the agility benefits achieved by running these workloads in the

cloud.

Risk and pricing calculations in financial services are most commonly embarrassingly

parallel, do not require communication between nodes to complete calculations, and

broadly benefit from horizontal scalability. Because of this, they are well suited to a

shared-nothing architectural approach, in which each compute node is independent

from the other.

For example, a financial model based on the Monte Carlo method can create millions of

scenarios to be divided across a large number (often hundreds or thousands) of

compute nodes for calculation in parallel. Each scenario reflects a different market

condition based on a number of variables.

In general, doubling the number of compute nodes allows these tasks to be distributed

more widely, which reduces by half the overall duration of the job. Access to increased

compute capacity through AWS allows for additional scenarios and greater precision in

the results in a given timeframe. Alternatively, you can use the additional capacity to

complete the same calculations in less time.

Financial services firms typically use a third-party grid scheduler to coordinate the

allocation of compute tasks to available capacity. Grid schedulers have these features

in common:

• A central scheduler to coordinate multiple clients and a large number (typically

hundreds or thousands) of compute nodes. The scheduler manages the loss of

any given component, and reschedules the work accordingly.

• Deployment tools to ensure that software binaries and relevant data are reliably

distributed to compute nodes that are allocated a specific task.

• An engine to allow rules to be defined to ensure that certain workloads are

prioritized over others in the event that the total capacity of the grid is exhausted.

https://aws.amazon.com/blogs/industries/how-cloud-increases-flexibility-of-trading-risk-infrastructure-for-frtb-compliance/
https://aws.amazon.com/blogs/industries/how-cloud-increases-flexibility-of-trading-risk-infrastructure-for-frtb-compliance/
https://en.wikipedia.org/wiki/Embarrassingly_parallel
https://en.wikipedia.org/wiki/Embarrassingly_parallel
https://en.wikipedia.org/wiki/Shared-nothing_architecture
https://en.wikipedia.org/wiki/Monte_Carlo_methods_in_finance

Amazon Web Services Financial Services Grid Computing on AWS

 Page 4

• Brokers are typically employed to manage the direct allocation of tasks that are

submitted by a client to the compute grid. In some cases, an allocated compute

node makes a direct connection back to a client to collect tasks to reduce

latency. Brokers are usually horizontally scalable, and are well suited to the

elasticity of cloud.

In some cases, the client is another grid node that generates further tasks. Such multi-

tier, recursive architectures are not uncommon, but present further challenges for

software engineers and HPC administrators who want to maximize utilization while

managing risks, such as deadlock, when parent tasks are unable to yield to child tasks.

The key benefit of running HPC workloads on AWS is the ability to allocate large

amounts of compute capacity on demand without the need to commit to the upfront and

ongoing costs of a large hardware investment. Capacity can be scaled minute by minute

according to your needs at the time. This avoids pre-provisioning of capacity according

to some estimate of future peak demand. Because AWS infrastructure is charged by

consumption of CPU-hours, it’s possible to complete the same workload in less time, for

the same price, by simply scaling the capacity.

The following figure shows two approaches to provisioning capacity. In the first, two

CPUs are provisioned for ten hours. In the second, ten CPUs are provisioned for two

hours. In a CPU-hour billing model, the overall cost is the same, but the latter produces

results in one fifth of the time.

Two approaches to provisioning 20 CPU-hours of capacity

Developers of the analytics calculations used in HPC applications can use the latest

CPUs, graphics processing units (GPUs), and field-programmable gate arrays (FPGAs)

available through the many Amazon EC2 instance types. This drives efficiency-per-

core, and differs from on-premises grids that tend to be a mixture of infrastructure,

which reflects historic procurement rather than current needs.

https://aws.amazon.com/ec2/instance-types/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 5

Diverse pricing models offer flexibility to these customers. For example, Amazon EC2

Spot Instances can reduce compute costs by up to 90%. These instances are

occasionally interrupted by AWS, but HPC schedulers with a history of managing

scavenged CPU resources can react to these events and reschedule tasks accordingly.

This document includes several recommended approaches to building HPC systems in

the cloud, and highlights AWS services that are used by financial services organizations

to help to address their compute, networking, storage, and security requirements.

Grid computing on AWS

A key driver for the migration of HPC workloads from on-premises environments to the

cloud is flexibility. AWS offers HPC teams the opportunity to build reliable and cost-

efficient solutions for their customers, while retaining the ability to experiment and

innovate as new solutions and approaches become available.

HPC teams that want to migrate an existing HPC solution to the cloud, or to build a new

solution, should review the AWS Well-Architected Framework which also includes a

specific Financial Services Industry Lens with a focus on how to design, deploy, and

architect financial services industry (FSI) workloads that promote resiliency, security,

and operational performance in line with risk and control objectives. This framework

applies to any cloud deployment and seeks to ensure that systems are architected

according to best practices. Additionally, the HPC-specific lens document also identifies

key elements to help ensure the successful deployment and operation of HPC systems

in the cloud.

The following sections include information about AWS services that are most relevant to

HPC systems, particularly those that support financial services customers.

https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/well-architected
https://docs.aws.amazon.com/wellarchitected/latest/financial-services-industry-lens/introduction.html
https://docs.aws.amazon.com/wellarchitected/latest/high-performance-computing-lens/introduction.html

Amazon Web Services Financial Services Grid Computing on AWS

 Page 6

A typical HPC architecture with the key components, including the risk management system

(RMS), grid controller, grid brokers, and two compute instance pools

Compute and networking

AWS offers a wide range of Amazon Elastic Compute Cloud (Amazon EC2) instance

types, which enable you to select the configuration that is best suited to your needs at

any given time. This is a departure from the typical Bill of Materials approach, which

limits the configurations available on-premises in favor of deployment simplicity. It also

offers evergreening, which enables you to take advantage of the latest CPU

technologies as they are released without consideration for any prior investment. HPC

customers in financial services should consider the following instances types:

https://aws.amazon.com/ec2/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 7

• Amazon EC2 compute-optimized instances — C class instances are

optimized for compute-intensive workloads and deliver cost-effective high

performance at a low price per compute ratio.

• Amazon EC2 General-purpose instances —

o M class — Commonly used in HPC applications because they offer a good

balance of compute, memory, and networking resources.

o Z class — Offer the highest CPU frequencies with a high memory footprint.

o T series — Provide a baseline level of CPU performance with the ability to

burst to a higher level when required. The use of these instances for HPC

workloads can be attractive for some workloads; however, their variable

performance profile can result in inconsistent behavior, which might be

undesirable.

o Amazon EC2 memory optimized instances—

o R class – These instances offer higher memory-to-CPU ratios and so may

be applied to X-Valuation Adjustment (XVA) calculations such as Credit

Value Adjustments which typically require additional memory

• Instances with the suffix a, have AMD processors, for example, R5a.

• Instances with the suffix g, have Arm-based AWS Graviton2 processors, for

example, C6g.

• Amazon EC2 Accelerated Computing instances use hardware accelerators,

or co-processors, to perform functions such as floating-point number

calculations, graphics processing, or data pattern matching, more efficiently than

is possible in software running on CPUs.

o P class instances are intended for general-purpose GPU compute

applications.

o F class instances offer customizable hardware acceleration with field

programmable gate arrays (FPGAs).

The latest AWS instances are based on the AWS Nitro System. The Nitro System is

collection of AWS-built hardware and software components that enable high

performance, high availability, high security, and bare metal capabilities to eliminate

virtualization overhead. By selecting Nitro based instances, HPC applications can

expect performance levels that are indistinguishable to a bare-metal system while

retaining all of the benefits of an ephemeral virtual host.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#ec2-nitro-instances

Amazon Web Services Financial Services Grid Computing on AWS

 Page 8

Table 1 – Amazon EC2 instance types that are typically used for HPC workloads

Instance Type Class Description

General-purpose T Burstable, general-purpose, low cost

M General-purpose instances

Compute-optimized C For compute intensive workloads

Memory-optimized R For memory intensive workloads

X For memory intensive workloads

Z High compute capacity and high memory

Accelerated computing P / F General-purpose GPU (P) or FPGA (F) capabilities

This diverse selection of instance types helps support a wide variety of workloads with

optimal hardware and promotes experimentation. HPC teams can benchmark various

sets of instances to optimize their scheduling strategies. Quantitative developers can try

new approaches with GPUs, FPGAs, or the latest CPUs, without upfront costs or

protracted procurement processes. You can immediately deploy at scale your optimal

approach, without the traditional hardware lifecycle considerations.

When you run experiments, or if a subset of production workloads requires a specific

instance type, grid schedulers typically enable tasks to be directed to the appropriate

hardware through compute resource groups.

x86 based Amazon EC2 instances support multithreading, which enables multiple

threads to run concurrently on a single CPU core. Each thread is represented as a

virtual CPU (vCPU) on the instance. An instance has a default number of CPU cores,

which varies according to instance type.

To ensure that each vCPU is used effectively, it’s important to understand the behavior

of the calculations running in the HPC environment. If all processes are single-threaded,

a good initial strategy is to have the scheduler assign one process per vCPU on each

instance. However, if the calculations require multithreading, tuning might be required to

maximize the use of vCPUs without introducing excessive CPU context switching.

By default, x86 based Amazon EC2 instances have hyperthreading (HT) enabled. You

can disable HT either at boot or at runtime if the analytics perform better without it,

which you can establish through benchmarking. The Disabling Intel Hyper-Threading

https://aws.amazon.com/blogs/compute/disabling-intel-hyper-threading-technology-on-amazon-linux/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 9

Technology on Amazon Linux blog post has an explanation of the methods you can use

to configure HT on an Amazon Linux instance.

You might typically tune your infrastructure to increase processor performance

consistency or to reduce latency. Some Amazon EC2 instances enable control of

processor C-states (idle state power saving) and P-states (optimization of voltage and

CPU frequency during run). The default settings for C-state and P-state are tuned for

maximum performance for most workloads.

If an application might benefit from reduced latency in exchange for lower frequencies,

or from more consistent performance without the benefit of Turbo Boost, then changes

to the C-state and P-state configurations might be worth considering. For information

about the instance types that support the adjustment and how to make these changes

to an Amazon Linux 2-based instance, see Processor State Control for Your EC2

Instance in the Amazon Elastic Compute Cloud User Guide for Linux Instances.

Another potential optimization is over-subscription. This approach is useful when you

know processes spend time on non-CPU intensive activities, such as waiting on data

transfers or loading binaries into memory. For example, if this overhead is estimated at

10%, you might be able to schedule one additional task on the host for every 10 vCPUs

to achieve higher CPU utilization and throughput.

There are many performance benefits of AWS Graviton processors. AWS Graviton

processors are custom built by AWS using 64-bit Arm Neoverse cores. AWS Graviton2

processors provide up to 40% better price performance over comparable current

generation x86-based instances for a wide variety of workloads, including application

servers, microservices, high performance computing, electronic design automation,

gaming, open-source databases, and in-memory caches.

Interpreted and bytecode-compiled languages such as Python, Java, Node.js and .NET

Core on Linux may run on AWS Graviton2 without modification. Support for Arm

architectures is also increasingly common in third-party numerical libraries, aiding the

path to adoption.

Compiler selection is another consideration. The use of a complier that is optimized for

the target CPU architecture can yield performance improvements. For example,

quantitative analysts might see value in developing analytics using the Intel C++

Compiler and running on instances that support AVX-512 capable CPUs. The AVX-512

instruction set allows developers to run twice the number of floating-point operations per

second (FLOPS) per clock-cycle. Similarly, AMD offers the AMD Optimizing C/C++

Compiler which optimizes for AMD EPYC architectures.

https://aws.amazon.com/blogs/compute/disabling-intel-hyper-threading-technology-on-amazon-linux/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_control.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_control.html
https://aws.amazon.com/ec2/graviton/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 10

In addition to the instance types and classes shown in Table 1, there are also options

for procuring instances in AWS:

• Amazon EC2 On-Demand Instances offer capacity as required, for as long as

they are needed. You are only charged for the time that the instance is active.

These are ideal for components that benefit from elasticity and predictable

availability, such as brokers, compute instances hosting long-running tasks, or

tasks that generate further generations of tasks.

• Amazon EC2 Spot Instances are particularly appropriate for HPC compute

instances because they benefit from substantial savings over the equivalent on-

demand cost. Spot Instances can occasionally be ended by AWS when capacity

is constrained, but grid schedulers can typically accommodate these occasional

interruptions.

• Amazon EC2 Reserved Instances provide a significant discount of up to 72%

based on a one-year or three-year commitment. Convertible Reserved Instances

offer additional flexibility on the instance family, operating system, and tenancy of

the reservation. Relatively static hosts, such as HPC grid controller nodes or data

caching hosts, might benefit from Reserved Instances.

• Savings Plans is a flexible pricing model that also provides savings of up to 72%

on your AWS compute usage regardless of instance family, size, operating

system (OS), tenancy or AWS Region. Savings Plans offer significant discounts

in exchange for a commitment to use a specific amount of compute power

(measured in $/hour) for a one- or three-year period. Just like Amazon EC2

Reserved Instances, Savings Plans are ideal for long-running hosts such as HPC

Controller nodes.

It’s important to note that regardless of the procurement model selected the instances

delivered by AWS are exactly the same.

Compute instance provisioning and management strategies

Spot Instances are not suitable for workloads that are inflexible, stateful, fault-intolerant,

or tightly coupled between instance nodes. They are also not recommended for

workloads that are intolerant of occasional periods when the target capacity is not

completely available. However, many financial services organizations make use of Spot

Instances for part of their HPC workloads.

A Spot Instance interruption notice is a warning that is issued two minutes before

Amazon EC2 interrupts a Spot Instance. You can configure your Spot Instances to be

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/savingsplans/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 11

stopped or hibernated, instead of being ended when they are interrupted. Amazon EC2

then automatically stops or hibernates your Spot Instances on interruption, and

automatically resumes the instances when capacity is available.

AWS enables you to minimize the impact of a Spot Instance interruption through

instance rebalance recommendations and Spot Instance interruption notices. An EC2

Instance rebalance recommendation is a signal that notifies you when a Spot Instance

is at elevated risk of interruption. The signal gives you the opportunity to proactively

manage the Spot Instance in advance of the two-minute Spot Instance interruption

notice. You can decide to rebalance your workload to new or existing Spot Instances

that are not at an elevated risk of interruption. AWS has made it easy for you to use this

new signal by using the Capacity Rebalancing feature in EC2 Auto Scaling groups and

Spot Fleet.

If hibernation is configured, this feature operates like closing and opening the lid on a

laptop computer, and saves the memory state to an Amazon Elastic Block Store

(Amazon EBS) disk. However, this approach to managing interruptions should be used

with caution because the grid scheduler might not be able to track such quiesced

workloads, which could result in timeouts and rescheduling tasks if the hibernated

image is not reactivated quickly.

• Amazon EC2 Spot Fleets enable you to launch a fleet of Spot Instances that

span various EC2 instance types and Availability Zones. By defining the target

capacity using an appropriate metric (for example, a Slot for an HPC application)

the fleet sources capacity from EC2 Spot Instances at the best possible price.

HPC teams can define Spot Fleet strategies that use diverse instance types to

make sure you have the best experience at the lowest cost.

• Amazon EC2 Fleet also enables you to quickly create fleets that are diversified

by using EC2 On-Demand Instances, Reserved Instances, and Spot Instances.

With this approach, you can optimize your HPC capacity management plan

according to the changing demands of your workloads.

Both EC2 Fleet and Spot Fleet integrate with Amazon EventBridge to notify you

about important Fleet events, state changes, and errors. This enables you to

automate actions in response to Fleet state changes, and monitor the state of

your Fleet from a central place without needing to continuously poll Fleet APIs.

They both also support the Capacity Optimized allocation strategy, which

automatically makes the most efficient use of available spare capacity while still

taking advantage of the steep discounts offered by Spot Instances.

https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet.html
https://aws.amazon.com/ebs/
https://aws.amazon.com/blogs/aws/amazon-ec2-spot-fleet-api-manage-thousands-of-instances-with-one-request/
https://aws.amazon.com/blogs/aws/ec2-fleet-manage-thousands-of-on-demand-and-spot-instances-with-one-request/
https://aws.amazon.com/eventbridge/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 12

• Amazon EC2 Auto Scaling groups contain a collection of Amazon EC2 instances

that are treated as a logical grouping for the purposes of automatic scaling and

management. An Auto Scaling group enables you to use Amazon EC2 Auto

Scaling features, such as health check replacements and scaling policies.

• Amazon EC2 launch templates contain the configuration information used to

launch an instance. The template can define the AMI ID (Operating system

image), instance type, and network settings for the compute instances. You can

use Launch Templates with EC2 Fleet, Spot Fleet, or Amazon EC2 Auto Scaling

and make it easier to implement and track configuration standards.

• Launch Template versioning can be used within the EC2 Auto Scaling Group

‘Instance Refresh’ feature to update pools of capacity while minimizing

interruptions to the workload. All you need to do is specify the percentage of

healthy instances to keep in the group while the Auto Scaling group terminates

and launches instances. You can also specify the warm-up time, which is the

time period that the Auto Scaling group waits between instances that get

refreshed via Instance Refresh.

One option to begin an HPC deployment is to use only On-Demand Instances. After you

understand the performance of your workloads, you can develop and optimize a

strategy to provision instances using Amazon EC2 Auto Scaling Groups, Amazon EC2

Fleet, or Amazon EC2 Spot Fleet.

For example, you can deploy a number of Reserved Instances or Savings Plans to host

core grid services, such as schedulers, that are required to be available at all times. You

can provision On-Demand Instances during the intraday period to ensure predictable

performance for synchronous pricing calculations. For an overnight batch, you can use

large fleets of Spot Instances to provide massive volumes of capacity at a minimum

cost, and supplement them as necessary with On-Demand Instances to ensure

predictable performance for the most time-sensitive workloads.

The following figure shows two approaches to provisioning. In each case, ten vCPUs of

Reserved Instance capacity remain online for the stateful scheduling components.

In the first case, 20 further vCPUs are provisioned using On-Demand Instances for ten

hours to accommodate a batch that runs for 200 vCPU hours with a ten-hour SLA.

In the second approach, the 20 vCPUs are also provisioned at the outset using On-

Demand Instances to provide confidence in the batch delivery, but 70 vCPUs based on

low-cost Spot Instances are also added. Because of the volume of Spot Instances, the

batch completes much more quickly (in about three hours) and at a significantly reduced

https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-templates.html
https://aws.amazon.com/blogs/compute/introducing-instance-refresh-for-ec2-auto-scaling/
https://aws.amazon.com/blogs/compute/introducing-instance-refresh-for-ec2-auto-scaling/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 13

cost. However, if the Spot Instances were not available for any reason, the batch would

still complete on time with the On-Demand Instances provisioned.

AWS instance provisioning strategies

One of the key benefits of deploying applications in the AWS Cloud is elasticity.

Amazon EC2 Auto Scaling enables HPC managers to configure Amazon EC2 instance

provisioning and decommissioning events based on the real-time demands of their

platform. The concept of ‘Instance Weightings’ allows Auto Scaling groups to start

instances from a diverse pool of instance types to meet an overall capacity target for the

workload. Though grids were previously provisioned based on predictions of peak

demands (with periods of both constraint and idle capacity), Amazon EC2 Auto Scaling

has a rich API that enables it to be integrated with schedulers to easily manage scaling

events.

When you remove hosts from a running cluster, make sure to allow for a drain down

period. During this period, the targeted host stops taking on new work, but is allowed to

complete work in progress. When you select nodes for removal, avoid any long-running

tasks, so that the shutdown is not delayed and you don’t lose progress on those

calculations. If the scheduler allows a query of total runtime of tasks in progress,

grouped by instance, you can use this to identify which are the optimal candidates for

removal, specifically the instances with the lowest aggregate total of runtime by tasks in

progress.

Where capacity is managed automatically, Amazon EC2 Auto Scaling groups offer

‘scale-in’ protection as well as configurable termination policies to allow HPC managers

to minimize disruption to tasks in flight. Scale-in protection allows an Auto Scaling

Group, or an individual instance to be marked as ‘InService’ and so ineligible for

termination in a ‘scale-in’ event. You also have the option to build custom ending

policies using AWS Lambda to give more control over which instances are ended.

https://aws.amazon.com/ec2/autoscaling/
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-instance-termination.html
https://aws.amazon.com/lambda/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 14

These protections can be controlled by an API for integration with the scheduler to

automate the drain down process.

Paradoxically, adding instances to a cluster can temporarily slow the flow of tasks if

those new instances need some time to reach optimal performance, as binaries are

loaded into memory and local caches are populated. Amazon EC2 Auto Scaling groups

also support warm pools. A warm pool is a pool of pre-initialized EC2 instances that sits

alongside the Auto Scaling group. Whenever your application needs to scale out, the

Auto Scaling group can draw on the warm pool to meet its new desired capacity. The

goal of a warm pool is to ensure that instances are ready to quickly start serving

application traffic, accelerating the response to a scale-out event. This is known as a

warm start.

So far, this section has addressed compute instance provisioning at the host level.

Increasingly customers are looking to serverless solutions based on either container

technologies such as Amazon Elastic Container Service (Amazon ECS), Amazon

Elastic Kubernetes Service (Amazon EKS), or AWS Lambda.

For both Amazon ECS and Amazon EKS, the AWS Fargate serverless compute engine

removes the need to orchestrate infrastructure capacity to support containers. Fargate

allocates the right amount of compute, eliminating the need to choose instances and

scale cluster capacity. You pay only for the resources required to run your containers,

so there is no over-provisioning and paying for additional servers.

Fargate supports both Spot Pricing for ECS and Compute Savings Plans for Amazon

ECS and Amazon EKS. To illustrate how Amazon EKS might be used in a high-

throughput compute (HTC) environment, AWS has released the open-source solution

‘aws-htc-grid’. This project shows how AWS technologies such as Lambda, Amazon

DynamoDB, and Amazon Simple Queue Service (Amazon SQS) can be combined to

provide much of the functionality of a traditional HPC scheduler. Note that aws-htc-

grid is not a supported AWS service offering.

For customers using AWS Lambda, there are no instances to be scaled; however there

is the concept of Concurrency which is the number of instances of a function which can

serve requests at a time. There are default Regional concurrency limits which can be

increased through a request in the Support Center console. Financial services firms

have already built completely serverless HPC solutions based on Lambda (similar to the

architecture outlined here) that support tens of millions of calculations per day.

In addition to considering alternative CPU architectures and accelerated computing

options, customers are increasingly looking at their existing dependencies on

https://aws.amazon.com/ecs/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/lambda/
https://aws.amazon.com/fargate/
https://github.com/awslabs/aws-htc-grid/blob/main/docs/architecture.md
https://github.com/awslabs/aws-htc-grid/blob/main/docs/architecture.md
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/sqs/
https://aws.amazon.com/lambda/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 15

commercial operating systems such as Microsoft Windows. Such dependencies are

often historical, stemming from risk management systems built around spreadsheets,

however today the cost premiums can be very material especially when compared to

deeply discounted EC2 capacity under Amazon EC2 Spot.

AWS offers a variety of Linux distributions including Red Hat, SUSE, CentOS, Debian,

Kali, Ubuntu, and Amazon Linux. The latter is a supported and maintained Linux image

provided by AWS for use on Amazon EC2 (it can also be run on-premises for

development and testing). It is designed to provide a stable, secure, and high-

performance run environment for applications running on Amazon EC2. It supports the

latest EC2 instance type features, and includes packages that enable easy integration

with AWS. AWS provides ongoing security and maintenance updates to all instances

running the Amazon Linux AMI, and it is provided at no additional charge to Amazon

EC2 users.

Storage and data sharing

In HPC systems, there are two primary data distribution challenges. The first is the

distribution of binaries. In financial services, large and complex analytical packages are

common. These packages are often 1GB or more in size, and often multiple versions

are in use at the same time on the same HPC platform, to support different businesses

or back-testing of new models.

In a constrained, on-premises environment, you can mitigate this challenge through

relatively infrequent updates to the package and a fixed set of instances. However, in a

cloud-based environment, instances are short-lived and the number of instances can be

much larger. As a result, multiple packages may be distributed to thousands of

instances on an hourly basis as new instances are provisioned and new packages are

deployed.

There are a number of possible approaches to this problem. One is to maintain a build

pipeline that incorporates binary packages into the Amazon Machine Images (AMIs).

This means that once the machine has started, it can process a workload immediately

because the packages are already in place. The EC2 Image Builder tool simplifies the

process of building, testing and deploying AMIs. A limitation of this approach is that it

doesn’t accommodate the deployment of new packages to running instances, and it

requires them to be ended and replaced to get new versions.

Another approach is to update running instances. There are two different methods for

this type of update, which are sometimes combined:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://aws.amazon.com/image-builder/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 16

• Pull (or lazy) deployment — In this mode, when a task reaches an instance and

it depends on a package that is not in place, the engine pulls it from a central

store before it runs the task. This approach minimizes the distribution of

packages and saves on local storage because only the minimum set of packages

is deployed. However, these benefits are at the expense of delaying tasks in an

unpredictable way, such as the introduction of a new instance in the middle of a

latency sensitive pricing job. This approach may not be acceptable if large

volumes of tasks have to wait for the grid nodes to pull packages from a central

store which could struggle to service very large numbers of requests for data.

• Push deployment — In this mode you can instruct instance engines to

proactively get a specific package before they receive a task that depends on it.

This approach allows for rolling upgrades and ensures tasks are not delayed by a

package update. One challenge with this method is the possibility that new

instances (which can be added at any time) might miss a push message, which

means you must keep a list of all currently live packages.

In practice, a combination of these approaches is common. Standard analytics

packages are pushed because they’re likely to be needed by the majority of tasks.

Experimental packages or incremental ‘Delta’ releases are then pulled, perhaps to a

smaller set of instances.

It might also be necessary to purge deprecated packages, especially if you deploy

experimental packages. In this case, you can use a list of live packages to enable your

compute instances to purge any packages that are not in the list and thus are not

current.

Error! Reference source not found. shows a cloud-native implementation of these

approaches. It uses a centralized package store in Amazon Simple Storage Service

(Amazon S3) with agents that respond to messages delivered through an Amazon

Simple Notification Service (Amazon SNS) topic.

After the package is in place on S3, notifications of new releases can be generated

either by an operator or as a final step in an automated build pipeline. Compute

instances subscribed to an SNS topic (or to multiple topics for different applications) use

these messages as a trigger to retrieve packages from S3. You can also use the same

mechanism to distribute delete messages to remove packages, if required.

https://aws.amazon.com/s3/
https://aws.amazon.com/sns/
https://aws.amazon.com/sns/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 17

Data distribution architecture using Amazon SNS messages and S3 Object Storage

The second data distribution challenge in HPC is managing data related to the tasks

being processed. Typically, this is bi-directional, with data flowing to the engines that

support the processing and resulting data passed back to the clients. There are three

common approaches for this process:

• In the first approach, communications are inbound (see the following figure) with

all data passing through the grid scheduler along with task data. This is less

common because it can cause a performance bottleneck as the cluster grows.

An inbound data distribution approach

Amazon Web Services Financial Services Grid Computing on AWS

 Page 18

• In another approach, tasks pass through the scheduler, but the data is handled

out-of-bounds through a shared, scalable data store or an in-memory data grid

(see the following figure). The task data contains a reference to the data’s

location and the compute instances can retrieve it as required.

An out-of-bounds data distribution approach

Finally, some schedulers support a direct data transfer (DDT) approach. In this model

the scheduler grid broker allocates compute instances which then communicate directly

with the client. This architecture can work well, especially with very short running tasks

with little data. However, in a hybrid model, with thousands of engines running on AWS

that need to access a single, on-premises client, this can present challenges to on-

premises firewall rules, or to the availability of ephemeral ports on the client host.

Amazon Web Services Financial Services Grid Computing on AWS

 Page 19

DDT (direct data transfer) data distribution approach

All of these approaches can be enhanced with caches located as close as possible to,

or hosted on, the compute instances. Such caches help to minimize the distribution of

data, especially if a significantly similar set is required for many calculations. Some

schedulers support a form of data-aware scheduling that tries to ensure that tasks that

require a specific dataset are scheduled to instances that already have that dataset.

This cannot be guaranteed, but often provides a significant performance improvement

at the cost of local memory or storage on each compute instance.

Though the combination of grid schedulers and distributed cache technologies used on

premises can provide solutions to these challenges, their capabilities vary and they are

not typically engineered for a cloud deployment with highly elastic, ephemeral

instances. You can consider the following AWS services as potential solutions to the

typical HPC data management use cases.

Amazon Web Services Financial Services Grid Computing on AWS

 Page 20

Amazon Simple Storage Service (Amazon S3)

The Amazon S3 provides virtually unlimited object storage designed for

99.999999999% of durability and high availability. For binary packages, it offers both

versioning and various immutability features, such as S3 Object Lock, which prevents

deletion or replacement of objects and has been assessed by Cohasset Associates for

use in environments that are subject to SEC 17a-4, CFTC, and FINRA regulations.

Binary immutability is a common audit requirement in regulated industries, which require

you to demonstrate that the binaries approved in the testing phase are identical to those

used to produce reports. You can include this feature in your deployment pipeline to

make sure that the analytics binaries you use in production are the same as those that

you validated. This service also offers easy to implement encryption and granular

access controls.

Some HPC architectures use checkpointing (compute instances save a snapshot of

their current state to a datastore) to minimize the computational effort that could be lost

if a node fails or is interrupted during processing. For this purpose, a distributed object

store (such as Amazon S3) might be an ideal solution. Because the data is likely to only

be needed for the life of the batch, you can use S3 life cycling rules to automatically

purge these objects after a small number of days to reduce costs.

Amazon Elastic File System (Amazon EFS)

Amazon EFS offers shared network storage that is elastic, which means it grows and

shrinks as required. Thousands of Amazon EC2 instances can mount EFS volumes at

the same time, which enables shared access to common data such as analytics

packages. Amazon EFS does not currently support Windows clients.

Amazon FSx for Windows File Server

Amazon FSx for Windows File Server provides fully managed, highly reliable, and

scalable file storage that is accessible over the open standard Server Message Block

(SMB) protocol. It is built on Windows Server, delivering a wide range of administrative

features such as user quotas, end user file restores, and Microsoft Active Directory

integration. It offers single- and Multi-Availability Zone deployment options, fully

managed backups, and encryption of data at rest and in transit.

https://aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lock.html
https://docs.aws.amazon.com/efs/latest/ug/whatisefs.html
https://aws.amazon.com/ec2/
https://aws.amazon.com/fsx/windows/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 21

Amazon FSx for Lustre

For transient job data, the Amazon FSx for Lustre service provides a high-performance

file system that offers sub-millisecond access to data and read/write speeds of up to

hundreds of gigabytes per second with millions of IOPs. Amazon FSx for Lustre can link

to an S3 bucket, which makes it easy for clients to write data objects to the bucket

(including clients from an on-premises system) and have those objects available to

thousands of compute nodes in the cloud (see the following figure).

FSx for Lustre is ideal for HPC workloads because it provides a file system that’s

optimized for the performance and costs of high-performance workloads, with file

system access across thousands of EC2 instances.

An example of an Amazon FSx for Lustre implementation

Amazon Elastic Block Store (Amazon EBS)

After a compute instance has binary or job data, it might not be possible to keep it in

memory, so you might want to keep a copy on a local disk. Amazon EBS offers

persistent block storage volumes for Amazon EC2 instances.

Though the volumes for compute nodes can be relatively small (10GB can be sufficient

to store a variety of binary package versions and some job data) there might be some

benefit to the higher IOPS and throughput offered by the Amazon EBS-provisioned

input/output operations per second (IOPS) solid state drives (SSDs). These offer up to

64,000 IOPS per volume and up to 1,000MB/s of throughout, which can be valuable for

workloads that require frequent, high-performance access to these datasets.

https://aws.amazon.com/fsx/lustre/
https://aws.amazon.com/ebs/
https://aws.amazon.com/ec2/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 22

Because these volumes incur additional cost, you should complete an analysis of

whether they provide any additional value over the standard, general-purpose volumes.

AWS Cloud hosted data providers

AWS Data Exchange makes it easy to find, subscribe to, and use third-party data in the

cloud. The catalog includes hundreds of financial services datasets from a wide variety

if providers. Once subscribed to a data product, you can use the AWS Data Exchange

API to load data directly into S3.

The Bloomberg Market Data Feed (B-PIPE) is a managed service providing

programmatic access to Bloomberg’s complete catalog of content (all the same asset

classes as the Bloomberg Terminal). Network connectivity with Bloomberg B-PIPE

leverages AWS PrivateLink, exposing the services as set of local IP addresses within

your Amazon Virtual Private Cloud (Amazon VPC) subnet and eliminating DNS issues.

B-PIPE services are presented via Network Load Balancers to further simplify the

architecture.

Additionally, Refinitiv’s Elektron Data Platform provides cost-efficient access to global,

real-time exchange, ‘over the counter’ (OTC), and contributed data. The data is also

provided using AWS PrivateLink, allowing simple and secure connectivity from your

Virtual Private Cloud (VPC).

Data management and transfer

Although HPC systems in financial services are typically loosely coupled, with limited

need for East-West communication between compute instances, there are still

significant demands for North-South communication bandwidth between layers in the

stack. A key consideration for networking is where in the stack any separation between

on-premises systems and cloud-based systems occurs. This is because communication

within the AWS network is typically of higher bandwidth and lower cost than

communication to external networks. As a result, any architecture that causes hundreds

or thousands of compute instances to connect to an external network—particularly if

they’re requesting the same binaries or task data—would create a bottleneck.

Ideally, the fanout point (the point in the architecture at which large numbers of

instances are introduced) is in the cloud. This means that the larger volumes of

communication stay in the AWS network with relatively few connections to on-premises

systems.

https://aws.amazon.com/data-exchange/
https://aws.amazon.com/financial-services/partner-solutions/bloomberg-b-pipe/
https://aws.amazon.com/privatelink
https://aws.amazon.com/vpc/
https://aws.amazon.com/financial-services/partner-solutions/refinitiv-elektron/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 23

AWS offers networking services that complement the financial services HPC systems. A

common starting point is to deploy AWS Direct Connect connections between customer

data centers and an AWS Region through a third-party point of presence (PoP)

provider. A Direct Connect link offers a consistent and predictable experience with

speeds of up to 100Gbps. You can employ multiple diverse Direct Connect links to

provide highly resilient, high-bandwidth connectivity.

Though most HPC applications within financial services are loosely coupled, this isn’t

universal and there are times when network bandwidth is a significant component of

overall performance. The current AWS Nitro–based instances offer up to 100Gbps of

network bandwidth for the largest instance types such as the c5n.18xlarge or up to

400Gbps in the case of the p4d.24xlarge instance. Additionally, a cluster placement

group packs instances close together inside an Availability Zone. This strategy enables

workloads to achieve the low-latency network performance necessary for tightly-coupled

node-to-node communication that is typical of HPC applications.

The Elastic Fabric Adaptor service (EFA) enhances the Elastic Network Adaptor (ENA),

and is specifically engineered to support tightly-coupled HPC workloads which require

low latency communication between instances. An EFA is a virtual network device

which can be attached to an Amazon EC2 instance. EFA is suited to workloads using

the Message Passing Interface (MPI). EFA may be worthy of consideration for some

financial services workloads, such as weather predictions, as part of an insurance

industry catastrophic event model.

EFA traffic that bypasses the operating system (OS-bypass) is not routable, so it’s

limited to a single subnet. As a result, any peers in this network must be in the same

subnet and Availability Zone, which could alter resiliency strategies. The OS-bypass

capabilities of EFA are also not supported on Windows.

Some Amazon EC2 instance types support jumbo frames where the Network Maximum

Transmission Unit (the number of bytes per packet) is increased. AWS supports MTUs

of up to 9001 bytes. By using fewer packets to send the same amount of data, end-to-

end network performance is improved.

Operations and management

HPC systems are traditionally highly decoupled and resilient to the failure of any given

component, with minimal disruption. However, HPC systems in financial services

organizations tend to be both mission critical and limited by the capabilities of traditional

approaches, such as physical primary and secondary data centers. In this model, HPC

teams have to choose between having secondary infrastructure sitting mostly idle in

https://aws.amazon.com/directconnect/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html
https://en.wikipedia.org/wiki/Message_Passing_Interface

Amazon Web Services Financial Services Grid Computing on AWS

 Page 24

case of the loss of a data center, or using all of the infrastructure on a daily basis but

with the possibility of losing up to 50% of that capacity in a disaster event. Some add a

third or fourth location to reduce the impact of the loss of a site, but at the cost of an

increased likelihood of an outage and network inefficiencies.

When you move to the cloud, you not only open up the availability of new services, but

also new approaches to solving these problems. AWS operates a model with Regions

and Availability Zones that are always active and offer high levels of availability.

By architecting HPC systems for multiple AWS Availability Zones, financial services you

can benefit from high levels of resiliency and utilization. In the unlikely event of the loss

of an Availability Zone, additional instances can be automatically provisioned in the

remaining Availability Zones to enable workloads to continue without any loss of data

and only a brief interruption in service.

A sample HPC architecture for a Multi-AZ deployment

https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 25

The high-level architecture in the preceding figure shows the use of multiple Availability

Zones and separate subnets for the stateful scheduler infrastructure (including

schedulers, brokers, data stores) and the compute instances. You can base your

scheduler instances on long-running Reserved Instances with static IP addresses to

help them communicate with on-premises infrastructure by simplifying firewall rules.

Conversely, you can base your compute instances on On-Demand Instance or Spot

Instances with dynamically allocated IP addresses. Security groups act as a virtual

firewall, which you can configure to allow the compute instances to communicate only

with scheduler instances.

With the Compute Instances being inherently ephemeral and with potentially limited

connectivity needs, it can be beneficial to have them sit within separate private address

ranges to avoid the need for you to manage demand for and allocate IPs from your own

pools. This can be achieved either through a secondary CIDR on the VPC, or with a

separate VPC for the compute infrastructure, connected through VPC peering.

The majority of AWS services relevant to financial services customers are accessible

from within the VPC using AWS PrivateLink, which offers private connectivity to those

services, and services hosted by other AWS accounts and supported AWS Marketplace

partner solutions. Traffic between your VPC and the service does not leave the Amazon

network and is not exposed to the public internet.

One of the keys to effective HPC operations are the metrics you collect and the tools to

explore and manipulate them. A common question from end users is, “Why is my job

slow?” It’s important to set up your HPC operation in a way that enables you to either

answer that question, or to empower users to find it for themselves.

AWS offers tools you can use to collect metrics and logs, at scale. Amazon CloudWatch

is a monitoring and management service that not only collects metrics and logs related

to AWS services, but through an agent, it can also be a target for telemetry from HPC

systems and the applications running on them. This provides a valuable central store for

your data, and allows diverse data sources to be presented on a common time series,

and helps you to correlate events when you diagnose issues. You can also use

CloudWatch as an auditable record of the calculations that were completed, with the

analytics binary versions that were used. You can export these logs to S3 and protect

them with the object lock feature for long term, immutable retention.

You may want to use a third-party log analytics tool. Many of the most common

products have native integrations with Amazon Web Services. Additionally, Amazon

Managed Service for Grafana enables you to analyze, monitor, and alarm on metrics,

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#add-ipv4-cidr
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/privatelink/integrated-services-vpce-list.html
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/grafana/
https://aws.amazon.com/grafana/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 26

logs, and traces across multiple data sources, including AWS, third-party independent

software vendors (ISVs), databases, and other resources.

Some grid schedulers require a relational database for the retention of statistics data.

For this purpose, you can use Amazon Relational Database Service (Amazon RDS),

which provides cost-efficient and resizable database capacity, while automating

administration tasks such as hardware provisioning, patching, and backups.

Another common challenge with shared tenancy HPC systems is the apportioning of

cost. The ability to provide very granular cost metrics according to usage can drive

effective business decisions within financial services.

The pay as you go pricing model of AWS empowers HPC managers and their end

customers to realize the benefits from the optimization of the system or its use. AWS

tools such as resource tagging and the AWS Cost Explorer can be combined to provide

rich cost data and to build reports that highlight the sources of cost within the system.

Tags can include details of report types, cost centers, or other information pertinent to

the client organization. There’s also an AWS Budgets tool which can be used to create

reports and alerts according to consumption.

When you combine detailed infrastructure costs with usage statistics, you can create

granular cost attribution reports. Some trades are particularly demanding of HPC

capacity, to the extent that the business might decide to exit the trade instead of

continuing to support the cost.

Task scheduling and infrastructure orchestration

A high-performance computing system needs to achieve two goals:

• Scheduling — Encompasses the lifecycle of compute tasks including: capturing

and prioritizing tasks, allocating them to the appropriate compute resources, and

handling failures.

• Orchestration — Making compute capacity available to satisfy those demands.

It’s common for financial services organizations to use a third-party grid scheduler to

coordinate HPC workloads. Orchestration is often a slow-moving exercise in

procurement and physical infrastructure provisioning. Traditional schedulers are

therefore highly optimized for making low-latency scheduling decisions to maximize

usage of a relatively fixed set of resources.

https://aws.amazon.com/rds/
https://aws.amazon.com/aws-cost-management/aws-cost-explorer/
https://aws.amazon.com/aws-cost-management/aws-budgets/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 27

As customers migrate to the cloud, the dynamics of the problem changes. Instead of

near-static resource orchestration, capacity can be scaled to meet the demands at that

instant. As a result, the scheduler doesn’t need to reason about which task to schedule

next but rather just inform the orchestrator that additional capacity is needed.

Table 2 — Task scheduling and infrastructure orchestration approaches

HPC hosting Task scheduling approach
Infrastructure orchestration

approach

On-Premises Rapid task scheduling decisions to

manage prioritization and maximize

utilization while minimizing queue

times.

Static, a procurement and physical

provisioning process run over

weeks or months.

Cloud based Focus on managing the task

lifecycle, decisions around

prioritization and queue times are

minimized by dynamic orchestration.

Highly dynamic, capacity on-

demand with ‘pay as you go’

pricing. Optimized for cost and

performance through selection of

instance type and procurement

model.

When you plan a migration, a valid option is to migrate the on-premises solution first,

and then consider optimizations. For example, an initial ‘lift and shift’ implementation

might use Amazon EC2 On-Demand Instances to provision capacity, which yields some

immediate benefits from elasticity. Some of the commercial schedulers also have

integrations with AWS, which enable them to add and remove nodes according to

demand.

When you are comfortable with running critical workloads on AWS, you can further

optimize your implementation with options such as using more native services for data

management, capacity provisioning, and orchestration. Ultimately, the scheduler might

be in scope for replacement, at which point you can consider a few different

approaches.

Though financial services workloads are often composed of very large volumes of

relatively short-running calculations, there are some cases where longer-running

calculations need to be scheduled. In these situations, AWS Batch could be a viable

alternative or a complementary service. AWS Batch plans, schedules, and runs batch

workloads while dynamically provisioning compute resources using containers. You can

configure parallel computation and job dependencies to allow for workloads where the

results of one job are used by another. AWS Batch is offered at no additional charge;

only the AWS resources it consumes generate costs.

https://aws.amazon.com/batch/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 28

Customers looking to simplify their architecture might consider a queue-based

architecture in which clients submit tasks to a stateful queue. This can then be serviced

by an elastic group of hungry worker processes that take pending workloads, process

them, and then return results. The Amazon SQS can be used for this purpose. Amazon

SQS is a fully managed message queuing service that is ideal for this type of decoupled

architecture. As a serverless offering, it reduces the administrative burden of

infrastructure management and offers seamless elastic scaling.

A simple HPC approach with Amazon SQS

Amazon SQS queues can be serviced by groups of Amazon EC2 instances that are

managed by AWS Auto Scaling groups. You can configure the AWS Auto Scaling

groups to scale capacity up or down based on metrics such as average CPU load, or

the depth of the queue. AWS Auto Scaling groups can also incorporate provisioning

strategies that can combine Amazon EC2 On-Demand Instances or Spot Instances to

provide flexible and low-cost capacity.

With serverless queuing provided by Amazon SQS, it’s logical to think about serverless

compute capacity. With AWS Lambda, you can run code without provisioning or

managing any servers. This function-as-a-service product allows you to only pay for the

computation time you consume.

You can also configure Lambda to process workloads from SQS, scaling out

horizontally to consume messages in a queue. Lambda attempts to process the items

from the queue as quickly as possible, and is constrained only by the maximum

concurrency allowed by the account, memory, and runtime limits. In 2020, these limits

were increased significantly. You can now allocate up to 10GB of memory and six

vCPUs to your functions, which also have support for the AVX2 instruction set. This

makes Lambda functions suitable for an even wider range of HPC applications.

https://aws.amazon.com/sqs/
https://aws.amazon.com/lambda/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 29

A serverless, event-driven approach to HPC

Taking these concepts further, the blog post Decoupled Serverless Scheduler To Run

HPC Applications At Scale on EC2 describes a decoupled serverless HPC scheduler

which can run on hundreds of thousands of cores using EC2 Spot Instances. The

following figure shows a cloud-native serverless HPC scheduling architecture.

A cloud-native serverless scheduler architecture

When you explore these alternative cloud-native approaches, especially in comparison

to established schedulers, it’s important to consider all of the features required to run

https://aws.amazon.com/blogs/compute/decoupled-serverless-scheduler-to-run-hpc-applications-at-scale-on-ec2/
https://aws.amazon.com/blogs/compute/decoupled-serverless-scheduler-to-run-hpc-applications-at-scale-on-ec2/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 30

what can be a critical system. Metrics gathering, data management, and management

tooling are only some of the typical requirements that must be addressed and should

not be overlooked.

A key benefit of running HPC workloads on AWS is the flexibility of the offerings that

enable you to combine various solutions to meet very specific needs. An HPC architect

can use Amazon EC2 Reserved Instances for long-running, stateful hosts. You can use

Amazon EC2 On-Demand Instances for long-running tasks, or to secure capacity at the

start of a batch. Additionally, you can provision Amazon EC2 Spot Instances to try to

deliver a batch more quickly and at lower cost. Some workloads can then be directed to

alternative platforms, such as GPU enabled instances or Lambda functions. You can

optimize the overall mix of these options on a regular basis to adapt to the changing

needs of your business.

Security and compliance

The approach to security in HPC systems running in the cloud is often different from

other applications. This is because of the ephemeral and stateless nature of the majority

of the resources. Issues of patching, inventory tooling, or human access can be

eliminated because of the short-lived nature of the resources.

• Patching – When you use a pre-patched AMI, the host is in a known compliant

state at startup. If a relatively short limit is placed on the life of the instance, it’s

likely that this approach will meet all necessary patching standards. Additionally,

AWS Systems Manager Patch Manager can be used to automate the process of

patching managed instances if necessary.

• Inventory tooling – On-premises hosts typically interact with compliance and

inventory systems. In the AWS Cloud, controls around the instance image and

the delivery of binaries mean that instances remain in a known state and can be

programmatically audited, so these historic controls might not be necessary.

Additionally, because highly scalable and elastic resources can put excessive

load on such systems, fully managed cloud-based solutions such as AWS

CloudTrail might provide a more suitable alternative.

• Root access – When you enable all debugging through centralized metrics and

automated reporting, you can mandate zero access to the compute nodes.

Without any root access, you can avoid key rotation and access control issues.

When you consider migrating to the cloud, an important early step is to decide which

internal tools and processes (if any) need to be replicated in the cloud. Amazon EC2

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-patch.html
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/cloudtrail/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 31

instances that are unencumbered by tooling tend to start up more quickly, which is

important when additional capacity is required to meet a business need.

Because of the stateless nature of the workloads, there is often little need to store data

for long periods, particularly when the job data isn’t especially sensitive, doesn’t include

personally identifying information (PII), and largely consists of public market datasets.

Regardless, encryption by default is easy to implement across a wide range of AWS

services.

Binary analytics packages often contain proprietary code that has intellectual value,

financial services organizations typically encrypt these binaries while in transit and use

built-in AWS tools to ensure they’re encrypted while at rest in AWS storage. If compute

instances are configured for minimal or no access, the risk of exfiltration while the

binaries are in memory is minimized.

AWS has a wide range of certifications and attestations relevant to financial services

and other industries. For full details of AWS certifications, see AWS Compliance.

Before you design secure systems in AWS, to make sure you understand the respective

areas of responsibility for AWS and the customer, review the Shared Responsibility

Model.

The AWS Shared Responsibility Model

https://aws.amazon.com/compliance/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 32

This model is complemented by an extensive suite of tools and services to help you be

secure in the cloud. For more detailed information, review the AWS Well-Architected

Framework Security Pillar.

One service of particular interest to HPC applications is the AWS Identity and Access

Management (AWS IAM) service, which provides fine-grained access control across all

of the AWS services included in this paper. IAM also offers integration with your existing

identity providers through identity federation.

Interactions with the AWS APIs can be tracked with AWS CloudTrail, a service that

enables governance and auditing across the AWS account. This event history simplifies

security analyses, changes to resources, and troubleshooting.

Encryption by default is becoming increasing common within financial services, and

many AWS services now offer simple encryption features that integrate with AWS Key

Management Service (AWS KMS). This service makes it easy for you to create and

manage keys that can be used across a wide variety of AWS services. For HPC

applications, keys managed by AWS KMS might be used to encrypt AMIs or S3 buckets

that contain analytics binaries, or to encrypt data stored in the Parameter Store.

AWS KMS uses FIPS 140-2 validated hardware security modules (HSMs) to generate

and protect customer keys. The keys never leave these devices unencrypted.

Customers with specific internal or external rules regarding HSMs can choose AWS

CloudHSM, which is a fully managed FIPS 140-2 Level 3 validated HSM cluster with

dedicated, single-tenant access.

Migration approaches, patterns, and

anti-patterns

Many financial services organizations already have some form of HPC environment

hosted in an on-premises data center. If you’re migrating from such an implementation,

it’s important to consider what might be the best method to complete the migration. The

optimal approach depends on the desired outcome, risk appetite, and timescale, but

typically begins with one of the 6 Rs: Rehosting, Replatforming, Repurchasing,

Refactoring/Re-architecting, and (to a lesser degree) Retiring, or Retaining (revisiting).

HPC cloud migrations typically progress through three stages. The nuances and timings

of each stage depends on the individual businesses involved.

https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/welcome.html
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://aws.amazon.com/cloudhsm/
https://aws.amazon.com/cloudhsm/
https://aws.amazon.com/blogs/enterprise-strategy/6-strategies-for-migrating-applications-to-the-cloud/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 33

The first stage is Bursting capacity. In this mode, very little changes with the existing on-

premises HPC environment. However, at times of peak demand, Amazon EC2

instances can be created and added to the system to provide additional capacity. The

trigger for the creation of these instances is usually either:

• Scheduled – If workloads are predictable in terms of timing and scale, then a

simple schedule to add and remove a fixed number of hosts at predefined times

can be effective. The schedule can be managed by an on-premises system, or

with Amazon EventBridge rules.

• Demand based – In this mode, a component can monitor the performance of

workloads, and add or remove capacity based on demand. If a task queue starts

to increase, additional instances can be requested through the AWS API, and if

the queue decreases, some instances can be removed.

• Predictive – In some cases, especially when the startup time for a new instance

is long (perhaps because of very large package dependencies or complex OS

builds), it might be desirable to use a simple machine learning model to analyze

historic demand and determine when to bring capacity online. This approach is

rare, but can work well when combined with a demand-based approach.

As customers build confidence in their ability to supplement existing capacity with cloud-

based instances, they often make a decision to complete a migration. However, with

existing on-premises hardware still available, customers want to keep the value of that

infrastructure before it can be decommissioned. In this case, it can make sense to

provision a new strategic grid — with all of the same scheduler components — into the

cloud, and retain the existing on-premises grid. It’s then left to the upstream clients to

direct workloads accordingly, switching to the cloud-based grid as the on-premises

capacity is gradually retired.

When you have completed migration and are running all of their HPC workloads in the

cloud, the on-premises infrastructure can be removed. At this point, you have completed

a Rehosting approach. When your infrastructure is in the cloud, you then have the

flexibility to look at Replatforming or Refactoring your environment. The ability to build

entirely new architectures in the cloud alongside existing production systems means

that new approaches can be fully tested before they’re put into production.

One anti-pattern that’s occasionally proposed by customers involves platform stacking.

In this approach, solutions such as virtualization and/or container platforms are placed

under the HPC platform to try to create portability or parity between cloud-based

systems and on-premises systems. This approach can have some disadvantages:

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule-schedule.html

Amazon Web Services Financial Services Grid Computing on AWS

 Page 34

• Computational inefficiency – By adding more layers between the analytics

binaries and CPUs performance, computational efficiency is inevitably degraded

as CPU cycles are consumed by the abstraction layers.

• Licensing costs – HPC environments are large and continue to grow. Though

enterprise licenses can keep the upfront costs of using these technologies very

low, the large number of CPU cores involved in HPC workloads can mean

significant additional costs when the licenses are due for renewal.

• Management overhead – In the simplest approach, an Amazon EC2 instance

can be created on demand using an Amazon Linux 2 AMI. This AMI is patched

and up to date and because it exists for just a few hours, it requires no further

management. However, by building HPC stacks on top of other abstractions,

those long-running layers need patching and upgrading, and when multiple

layers are involved, the scope for disruption through planned maintenance or an

unplanned outage increases significantly.

• Scaling challenges – Amazon EC2 instances can be available very quickly on

demand. If scaling out involves the creation of a complex stack before processes

can run, this adds to the billing time of the instance before useful work can be

done. In worst-case scenarios, there can be a temptation to leave large numbers

of instances running so that they’re available if additional workloads arise.

• Optimization challenges – HPC systems are already complex, especially when

supporting huge volumes of variable workloads with different CPU and memory

requirements. Knowing where CPU and memory resources are consumed is vital

to identifying bottlenecks or debugging failures. If an HPC platform is based on a

series of abstraction layers, this can introduce additional variables that make it

difficult to see where inefficiencies exist, and as a result they might never be

found.

• Security challenges – Securing a more complex stack can be challenging

because there are more components to configure, monitor, and maintain to

ensure the integrity of the system.

By defining portability in terms of a virtual machine image or a Docker image, you can

find a good balance of portability while off-setting some of the disadvantages through

the use of cloud-native virtualization with Amazon EC2 and/or container management

solutions such as Amazon ECS and EKS, especially when combined with AWS

Fargate.

Amazon Web Services Financial Services Grid Computing on AWS

 Page 35

Keeping HPC systems as simple as possible provides the best performance at the

lowest cost. Most HPC solutions are already platforms by design and offer portability

through simple deployment patterns to standard operating systems.

Conclusion

AWS has a long history of helping customers from various industries — including

financial services — to optimize their HPC workloads. This experience over many years

from customers with diverse requirements has directly contributed to the products and

services offered today, and will continue to do so. AWS regularly accommodates very

large-scale requests for Amazon EC2 instances. Some of these clusters are large

enough to be recognized among the world’s largest supercomputers.

For example, a group of researchers from Clemson University created a high

performance cluster on the AWS Cloud using more than 1.1 million vCPUs on Amazon

EC2 Spot Instances running in a single AWS Region. This cluster was used to study

how human language is processed by computers by analyzing over 500,000

documents.

AWS also partnered with TIBCO to demonstrate the creation of a 1.3 million vCPU grid

on AWS using AWS Spot Instances. They were able to secure 61,299 instances in total

for the test which ran sample calculations based on the Strata open-source analytics

and market risk library from OpenGamma and was set up with their assistance. TIBCO

now offers their DataSynapse GridServer Manager scheduler via the AWS Marketplace

as a ‘pay as you go’ offering.

The PathWise HPC solution from professional services firm Aon allows (re)insurers and

pension funds to rapidly solve key insurance challenges. The platform relies upon cloud

compute capacity from AWS and recently moved to Amazon EC2 P3 instances

powered by NVIDIA V100 Tensor Core GPUs. These GPUs enable PathWise to run

immense calculations in parallel, completing in seconds or minutes analysis that can

take days or weeks in traditional systems.

Standard Chartered cut their Grid costs by 60% by leveraging Amazon EC2 Spot

Instances, and recently DBS Bank shared their architecture for a scalable serverless

compute grid based on AWS technologies.

HPC platforms are crucial enablers for many different types of financial services

organizations including capital markets, insurance, banking and payments. However, as

demands on these platforms increase as a result of regulatory requirements it’s clear

https://aws.amazon.com/blogs/aws/natural-language-processing-at-clemson-university-1-1-million-vcpus-ec2-spot-instances/
https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/blogs/aws/creating-a-1-3-million-vcpu-grid-on-aws-using-ec2-spot-instances-and-tibco-gridserver/
https://aws.amazon.com/blogs/aws/creating-a-1-3-million-vcpu-grid-on-aws-using-ec2-spot-instances-and-tibco-gridserver/
https://aws.amazon.com/marketplace/pp/prodview-olvhrhzzhbbd2
https://aws.amazon.com/solutions/case-studies/pathwise-p3/
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/solutions/case-studies/standard-chartered-case-study/
https://www.youtube.com/watch?v=T048vs9p1h4

Amazon Web Services Financial Services Grid Computing on AWS

 Page 36

that the traditional approaches to provisioning HPC infrastructure are inefficient and

ultimately unsustainable. Constraints on capital and capital expenditure further

compound the challenge.

By migrating these systems to AWS, customers benefit from a wide variety of compute

instances and relevant services, but also from a fundamental change in the delivery of

compute capacity. This new approach offers tremendous flexibility, both in terms of the

management of workloads that vary day-to-day, but also in the overall approach to cost

optimizations, security, availability, and operations.

HPC workloads already have much in common with stateless, function-as-a-service

architectural patterns. Just as financial services moved from local calculations to

clusters and into grids, they are starting to explore decentralized, serverless

approaches. As scaling become transparent, bottlenecks will continue to be removed

until processing becomes near real-time.

If you have challenges with the scale, cost, and capacity challenges of managing a high

performance computing system today, AWS has a number of services and partner

relationships that can help.

To learn more, you can contact AWS Financial Services through the AWS Financial

Services – Contact Sales form.

Contributors

Contributors to this document include:

• Alex Kimber, Solutions Architect, Global Financial Services, Amazon Web

Services

• Richard Nicholson, Solutions Architect, Global Financial Services, Amazon Web

Services

• Carlos Manzanedo Rueda, Specialist Solutions Architect, Amazon Web Services

• Ian Meyers, Solutions Architect Head of Technology, Amazon Web Services

Further reading

For additional information, see:

• AWS Well-Architected Framework

https://pages.awscloud.com/FinancialServicesContactSales.html
https://pages.awscloud.com/FinancialServicesContactSales.html
https://aws.amazon.com/well-architected

Amazon Web Services Financial Services Grid Computing on AWS

 Page 37

• AWS Well-Architected Framework – HPC Lens

• AWS Well-Architected Framework – Financial Services Industry Lens

• AWS HPC Blog

Glossary of terms

The following are the definitions for the terms that appear throughout this document.

Binary package – A set of binaries that run tasks. A typical HPC environment can

support multiple packages of various versions running in parallel. The package and

version required are defined by the client or risk system at the point of job submission.

These packages typically contain proprietary models that are built by the firm’s

Quantitative Analysis teams (quants) and are often the subject of intellectual property

concerns as they can form competitive differentiation.

Broker – A component of a typical HPC/Grid platform. The broker is typically

responsible for coordinating tasks and/or client connections to compute instances. As

grids and task volumes grow, the number of brokers is typically scaled out to ensure

throughput can be maintained.

Client – A software system, accessed by a user, that generates job requests and

presents results. In financial services, this is generally some form of risk management

system (RMS).

Engine – A software component responsible for invoking the calculation of a task using

a given binary package. A compute instance can run multiple engines in parallel,

perhaps one or more within each Slot.

Grid controller – A component of a typical HPC/Grid platform. The controller is

responsible for tracking the state of compute instances and Brokers, and hosting API or

GUI interfaces and metrics. The controller host is generally not involved in the

scheduling of individual tasks.

Instance – An Amazon EC2 virtual server. Each instance has a number of available

virtual CPUs (vCPUs) and an allocation of memory.

Job (or session) – The definition of a series of one or more related tasks. For example,

a job might define a series of scenarios and how they are sub-divided into a set of

tasks.

https://docs.aws.amazon.com/wellarchitected/latest/high-performance-computing-lens/introduction.html
https://docs.aws.amazon.com/wellarchitected/latest/financial-services-industry-lens/introduction.html
https://aws.amazon.com/blogs/hpc/

Amazon Web Services Financial Services Grid Computing on AWS

 Page 38

Job data – The set of data that is required in addition to the task metadata. Typically,

job data is passed to the compute instance as a reference, bypassing the scheduler

itself. In investment banking applications, job data is generally a combination of static

reference data (such as holiday calendars used to calculate trade expiration dates),

market data (used to build the market environment), and trade data (referencing the

trade or portfolio of trades which are the focus of the calculation).

Quantitative analysts / Quants – The team associated with the development of

mathematical models to predict the behavior of financial products.

Risk management system (RMS) – To improve oversight of risk calculations,

centralize operations and improve efficiency financial services firms are increasingly

leveraging risk management systems to sit between the users and the HPC platform.

Scheduler/Grid scheduler – A software component responsible for managing the

lifecycle of tasks through receipt, allocation to compute instances, collection of results,

and metrics and management processes.

Slot – A unit of compute currency used to approximate homogeneity within a

heterogenous compute environment. For example, a slot might be defined as two CPU

cores and 8GB of RAM, and would be considered interchangeable, regardless of

whether the compute instance was able to provide two or 32 slots.

Task – A unit of work to be scheduled to a compute instance. A task can define external

dependencies (such as market and reference data). In recursive workload patterns, a

parent task can spawn a child Job or a series of other child tasks.

Thread – An engine runs either single-threaded or multi-threaded processes. Ideally,

each thread runs on a separate vCPU to minimize the overhead of CPU context

switching.

User – In financial services, a user is typically a member of the front office, either a

trader managing positions or desk-head who wants oversight, and ensures successful

internal or external reporting is completed.

Amazon Web Services Financial Services Grid Computing on AWS

 Page 39

Document versions

Date Description

August 24, 2021 Updates to reflect AWS service improvements, more modern

and inclusive terminology, and new cloud-native

architectures.

September 2019 Updates to services, diagrams, and topology.

January 2016 Updates to services and topology.

January 2015 Initial publication.

	Overview
	Introduction
	Grid computing on AWS
	Compute and networking
	Compute instance provisioning and management strategies

	Storage and data sharing
	Amazon Simple Storage Service (Amazon S3)
	Amazon Elastic File System (Amazon EFS)
	Amazon FSx for Windows File Server
	Amazon FSx for Lustre
	Amazon Elastic Block Store (Amazon EBS)
	AWS Cloud hosted data providers

	Data management and transfer
	Operations and management
	Task scheduling and infrastructure orchestration
	Security and compliance

	Migration approaches, patterns, and anti-patterns
	Conclusion
	Contributors
	Further reading
	Glossary of terms
	Document versions

