
Security Practices for Multi-
Tenant SaaS Applications using
Amazon EKS
Technical Guide

June 4, 2021

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Overview .. 1

Recommendations ... 2

Use multiple clusters to separate tenant workloads.. 2

Use tenant-dedicated Worker nodes ... 2

Node Authorization Mode .. 3

Do not provide direct access to Kubernetes or EKS APIs .. 3

Use Namespaces to separate tenant workloads .. 3

Restrict container privileges ... 4

Forbid running tenant containers as root ... 5

Restrict mounting host filesystems .. 5

Restrict the use of host networking and block access to instance metadata service 6

Restrict creation of services with external IP addresses .. 7

Apply a Seccomp profile to containers .. 7

Apply SELinux profiles to containers ... 8

Use admission controllers to enforce security policies ... 9

Conclusion ... 12

Appendix: strict pod security policy for an untrusted tenant ... 12

Contributors ... 13

Document revisions ... 14

About this guide

This technical guide shows you how to securely manage and operate multi-tenant

software-as-a-service (SaaS) applications on Amazon Elastic Kubernetes Service

(Amazon EKS) clusters.

This document was adapted from the Amazon EKS Best Practices Guide. The Best

Practices Guide is updated frequently. Amazon Web Services (AWS) recommends

checking for updates periodically, because Amazon EKS and Kubernetes are rapidly

evolving. AWS also recommends subscribing to the AWS Containers Blog to receive

the latest updates on AWS container services.

https://aws.amazon.com/eks/
https://aws.github.io/aws-eks-best-practices/
https://aws.amazon.com/eks/
https://kubernetes.io/
https://aws.amazon.com/blogs/containers/

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

 1

Overview

Amazon EKS is frequently used by customers who are building software-as-a-service

(SaaS) solutions on AWS. How tenant data and applications are isolated in these SaaS

solutions can vary. Some SaaS providers rely on a siloed tenancy model where each

tenant has its own resources. Others rely on a pooled tenancy model where resources

are shared by tenants.

The following provides a more detailed overview of how these two models are realized

on Amazon EKS:

• The Pool Model describes an environment where the EKS resources are

shared by tenants with added measures to ensure that any one tenant cannot

access the resources of another tenant. Many customers want to run workloads

using shared hosts and a common control plane. This approach typically

simplifies the operational footprint of a SaaS application and improves the

agility, innovation, and cost model of a SaaS environment.

• The Silo Model represents a model where each tenant has dedicated EKS

resources. This model is often a good fit for tenants that may demand a more

absolute isolation boundary. This may be for a variety of reasons (security,

noisy neighbors, and so on). There are multiple constructs available in EKS that

can be used to realize the Silo model. The resources accessed from a silo

could be deployed in a silo or pool model.

These choices are not exclusive. Some SaaS providers may support both options

depending on the tiers or services that are part of their application.

 For both of these models, it is important ensure that tenants are unable to:

o Read or write any control-plane information unrelated to the tenant

o Access any resources not belonging to the tenant

o Obtain credentials not belonging to the tenant

o Impersonate other tenants

o Escape the confines of the tenant’s allocated compute, memory, or other

resources

https://aws.amazon.com/eks/

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

 2

Recommendations

AWS recommendations focus on the following objectives:

• Keeping control plane data strictly separated among tenants

• Preventing host corruption by tenant containers

• Preventing tenant containers from “breaking out of jail” and accessing sensitive

data on the hosts, such as credentials

Use multiple clusters to separate tenant workloads

The most secure way to run Silo workloads on EKS is to create a distinct EKS cluster

for each tenant. In such a design, even a tenant that runs privileged containers and has

access to the hosts cannot impact other tenants. Care must still be taken to not provide

credentials related to other tenants on a different cluster, and other AWS security best

practices such as proper Security Group rules and/or virtual private cloud (VPC)

separation must be implemented.

This approach does have some disadvantages. Having a separate cluster for each

tenant will add more complexity to the operational footprint of your environment. While

you can automate much of the operational experience, this approach will impact the

efficiency, agility, and cost profile of your SaaS environment.

Use tenant-dedicated Worker nodes

Customers choosing to host multiple tenants on a single cluster should sequester tenant

workloads onto dedicated nodes. This will help to ensure that, in the event of a

container breakout, no other customer’s Pods or data can be observed or tampered

with.

AWS Fargate

The easiest way to enforce this constraint is to run tenant Pods on AWS Fargate.

Fargate is a managed compute service that can run EKS Pods without having to

manage Amazon Elastic Compute Cloud (Amazon EC2) instances. When a Pod is

scheduled, capacity is allocated on-demand that is custom fit to match the Pod’s

resources. With Fargate, no two Pods are run on the same virtual machine (VM),

ensuring VM-level isolation as well as container isolation for tenant workloads.

https://kubernetes.io/docs/concepts/workloads/pods/
https://aws.amazon.com/fargate/
https://aws.amazon.com/ec2

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

 3

Amazon EC2 Worker nodes

Alternatively, if EC2 instances are used, one way to enforce this constraint is to apply

“taints” to all nodes with a tenant identifier. An example taint might be

tenantID=12345:NoSchedule. When combined with a matching toleration in a

tenant’s Pod specification, this will ensure that the tenant’s Pods can be placed only on

nodes matching the same taint.

Another (and somewhat weaker) way to enforce the constraint is to label nodes with

tenant identifiers, and using nodeSelector or affinity rules in Pod specifications to

ensure tenant Pods are scheduled only on the correct nodes. Customers who decide to

implement the constraint this way should use admission controllers, discussed later in

this document, to ensure those fields are supplied for all customer Pods.

Node Authorization Mode

As a mitigating control, in EKS clusters, all requests from nodes are subject to the Node

Authorization Mode. This prevents nodes from accessing Secrets, ConfigMaps,

Persistent Volume Claims, or Persistent Volumes unless they are related to pods

running on the node itself. See Using Node Authorization for additional information.

Do not provide direct access to Kubernetes or EKS

APIs

Accepting untrusted input from tenants and passing it to a security-sensitive system

such as Kubernetes may expose your cluster or its tenants to risks, such as

unauthorized modifications and data access. AWS recommends placing a discrete

management layer between tenants and the EKS clusters on which their workloads run.

Similar to a Web Application Firewall (WAF), this layer allows requests to be examined

and filtered before taking further action. Invalid requests should be rejected

immediately, while valid requests should be decorated with identifying information and

security-related modifications before being passed to the Kubernetes control plane.

Use Namespaces to separate tenant workloads

Kubernetes uses namespaces as a logical partitioning system for organizing objects

such as Pods and Deployments. Namespaces also operate as a privilege boundary in

Kubernetes’ Role-Based Access Control (RBAC) system. For example, Pods created in

namespace A do not have access to secrets in namespace B (and vice-versa).

https://blogs.grammatech.com/what-is-taint-checking
https://www.beyondtrust.com/resources/glossary/secrets-management
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/reference/access-authn-authz/node/
https://en.wikipedia.org/wiki/Namespace
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

 4

AWS advises customers to assign each tenant to their own unique namespace. When

assigning privileges to tenants, ensure each tenant can only access Kubernetes objects

in the tenant’s assigned namespace. Customers can automate this assignment by

enabling a mutating admission webhook that requires a tenant-specific label on all

customer-related objects and ensures the objects are placed in the tenant’s

namespace.

Restrict container privileges

Tenant containers should run unprivileged by default. If a tenant’s container requires

privileges, those privileges should be limited only to those required to successfully run

the container.

Privileges are specified in a container’s SecurityContext. Privileges can be specified

in one of two ways:

• By setting the privileged attribute to true. This is practically identical to

having root access on the host.

• By specifying a list of one or more capabilities to add or drop in the

capabilities list.

On EKS nodes that run the Docker container runtime, which includes those that use the

EKS Optimized Amazon Machine Image (AMI), each container has the following default

capabilities:

CAP_CHOWN, CAP_DAC_OVERRIDE, CAP_FOWNER, CAP_FSETID, CAP_KILL,

CAP_SETGID, CAP_SETUID, CAP_SETPCAP, CAP_NET_BIND_SERVICE,

CAP_NET_RAW, CAP_SYS_CHROOT, CAP_MKNOD, CAP_AUDIT_WRITE,

CAP_SETFCAP

AWS recommends dropping all unnecessary capabilities from this list, because most

software does not need them. AWS recommends examining the full list of Linux

capabilities, and allowing each tenant to select only those capabilities you permit.

Capabilities are documented on the Capabilities Linux manual page.

AWS also recommends disallowing any containers from running with the privileged

attribute set to true. It is much safer to provide fine-grained privileges by granting

specific capabilities instead. For example, a container that needs to bind to a low-

numbered port can be run with the CAP_NET_BIND_SERVICE capability instead of

running with full privileges. AWS also recommends disallowing the CAP_SYS_ADMIN and

CAP_NET_ADMIN capabilities, because they allow near-privileged access to the host.

https://www.docker.com/why-docker
https://man7.org/linux/man-pages/man7/capabilities.7.html

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

 5

Admission controllers, discussed later in this document, can help enforce these

restrictions.

Forbid running tenant containers as root

To simplify administration, Kubernetes containers share a user-ID namespace with the

host by default. This means that UID 100 inside the container is identical to UID 100 on

the host. The same is true for UID 0 (for example, the root user).

By default, containers start running as UID 0 (root). This poses several risks. For

example, if an unauthorized user compromises the application, they could read and

write files inside the container’s filesystem or gain remote access to it. If any host

filesystems are mounted into the container, the attacker could read and write any files

within them. Finally, if the container is run in privileged mode, the attacker unauthorized

user could obtain host-level access. This could compromise not only the host itself, but

also the control plane.

AWS recommends that each Dockerfile used to build a tenant’s container image

specify a USER directive that is a non-root user name or ID. In addition, AWS

recommends each tenant’s container be run with a specific user ID, group ID, and

fsGroup (equal to the group ID) in the SecurityContext of a Kubernetes container

specification.

Note: Pods that need to access Secrets or utilize IAM roles for service
accounts, and that are not running as root, must specify an fsGroup in

their securityContext that matches the group ID. This will prevent

permission errors related to file ownership.

Admission controllers, discussed later in this document, can help enforce these

restrictions.

Restrict mounting host filesystems

Containers have the ability to mount volumes from the host into them. This is a useful

feature in some circumstances, but poses significant risks.

First, containers might be able to view Secrets from the host or other containers. For

example, if /var/lib is mounted from the host into the container, files in other

containers—including Secrets—would be visible as well.

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

 6

Containers that run as root will have unrestricted write access to the host file system.

This could allow an unauthorized user to modify kubelet settings, create symbolic links

to directories or files in another sensitive location (such as /etc/shadow), install

Secure Shell (SSH) keys, corrupt essential files, or perform other malicious activities.

AWS recommends restricting containers from mounting host filesystems unless strictly

necessary. It is rare for a container in a Software as a Service (SaaS) environment to

need access to the host. Where it is required, AWS recommends enforcing read-only

mounts so that files cannot be written on the host.

Admission controllers, later in this document, can help enforce these restrictions.

Restrict the use of host networking and block access

to instance metadata service

The EC2 Instance Metadata Service (IMDS) is accessible to all EC2 instances by

default. This service provides useful introspection facilities, such as determining a

node’s availability zone, instance ID, and so forth. In addition, IMDS provides access to

IAM credentials that allow applications to assume the instance’s IAM role.

By default, every EC2 node in an EKS cluster is provided certain privileges necessary to

bootstrap itself and assign IP addresses to pods. For example, a node can attach a

VPC network interface and discover information about the EKS cluster it attaches to.

While these privileges are required for the node to operate effectively, it is not usually

desirable that the pods running on the node inherit these privileges.

One way to block pod IMDS access is to apply a network policy, enforced by an add-on

such as Calico, to ensure pods are unable to reach the Instance Metadata Service. To

do this, configure your network policy to block egress traffic to 169.254.0.0/16.

Another way to block pod IMDS access is to require IMDS version 2 (IMDSv2) to be

used, and to set the maximum hop count to 1. Configuring IMDS this way will cause

requests to IMDS from pods to be rejected, provided those pods do not use host

networking.

Additionally, AWS recommends forbidding untrusted pods from using host networking.

Admission controllers, discussed later in this document, can enforce this prohibition.

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://www.projectcalico.org/calico-networking-for-kubernetes/
https://hopzero.com/what-does-hop-count-mean/

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

 7

Restrict creation of services with external IP

addresses

A core feature of Kubernetes is a Service abstraction. Service abstractions work in part

by creating Domain Name System (DNS) entries in the cluster, visible by all pods, that

point to IP addresses. These IP addresses might be pods, or they might be external

addresses.

Additionally, any Kubernetes Service that has an external IP address will cause all

traffic to that address from any of the pods in the cluster to be sent to that service—

even that IP address actually belongs to a third party.

To illustrate, consider a hypothetical service on the internet with an address of

1.2.3.4. If a tenant creates a Kubernetes service with an external IP address of

1.2.3.4, all traffic destined for 1.2.3.4 from inside the cluster will be intercepted by

that service. This poses a significant security risk for a man-in-the-middle (MITM) attack.

AWS recommends forbidding tenants from creating Services having external IP

addresses. Customers can enforce this by using admission controllers, including these

controllers available on GitHub.

Additionally, AWS recommends forbidding tenants from being able to patch any status

fields of any Kubernetes objects. This is not normally permitted, but care should be

taken not to enable it by any cluster RBAC policies.

Apply a Seccomp profile to containers

Seccomp is a Linux kernel feature that restricts programs from making unauthorized

system calls, or syscalls. Syscalls are how programs interact with the Linux kernel. For

example, a program that wants to write to standard output might use the write(2)

syscall. Many syscalls are harmless, but others can be used to escalate privileges,

adjust kernel settings, or perform other undesirable actions.

By default, containers will be run “unconfined,” which allows them to invoke any syscall.

Instead, AWS recommends enabling the default Seccomp profile provided by the

container runtime. This profile allows most system calls, but excludes some that are

considered high risk. See Seccomp security profiles for Docker for a list of default

permitted and denied syscalls.

https://kubernetes.io/docs/concepts/services-networking/service/
https://csrc.nist.gov/glossary/term/man_in_the_middle_attack
https://github.com/kubernetes-sigs/externalip-webhook
https://github.com/kubernetes-sigs/externalip-webhook
https://en.wikipedia.org/wiki/Seccomp
https://docs.docker.com/engine/security/seccomp/

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

 8

To enable this profile, in each Pod or container’s SecurityContext, specify a

seccompProfile with a type of RuntimeDefault. See Set the Seccomp Profile for a

Container for more information.

It is also possible to run a container with a custom Seccomp profile. This can be used to

further restrict the syscalls that may be invoked, or permit syscalls that would otherwise

be forbidden. Tools such as strace(1) or Sysdig Inspect can be used to determine

which syscalls an application makes.

Apply SELinux profiles to containers

SELinux is an enhanced security feature that is available in Linux. It was originally

developed by the United States National Security Agency (NSA) to provide mandatory

access controls to the operating system.

SELinux goes well beyond the basic UNIX permission model by introducing the concept

of labeling to processes and files, and fine-grained policies that control what sorts of

permissions processes have to access files and perform sensitive operations. If a policy

permits the operation, access is granted. Otherwise—even if the UNIX permission

model would allow it—access is denied.

AWS recommends enabling SELinux on EC2 instances that host multi-tenant EKS

workloads. This requires an SELinux-enabled Linux distribution such as Bottlerocket,

Red Hat Enterprise Linux 7 or later, or CentOS 7 or later. On non-Bottlerocket

distributions, it also requires an SELinux-enabled container runtime engine such as

Docker CE 19 or later. SELinux is not available with Amazon Linux 2 at this time.

When SELinux is enabled, most non-privileged pods will automatically have their own

multi-category security (MCS) label applied to them. This MCS label is unique per Pod,

and is designed to ensure that a process in one Pod cannot manipulate a process in

any other Pod or on the host. Even if a labeled Pod runs as root and has access to the

host filesystem, it will be unable to manipulate files, make sensitive system calls on the

host, access the container runtime, or obtain kubelet’s secret key material.

Here is an example of how to configure an SELinux MCS label for a Pod. In this case,

the category IDs are c123 and c456, which you can associate with a unique Pod.

(SELinux requires a process have at least two category IDs.)

securityContext:

 seLinuxOptions:

 level: "s0:c123,c456"

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-seccomp-profile-for-a-container
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-seccomp-profile-for-a-container
https://github.com/draios/sysdig-inspect
https://en.wikipedia.org/wiki/Security-Enhanced_Linux
https://www.thegeekdiary.com/understanding-selinux-file-labelling-and-selinux-context/
https://www.thegeekdiary.com/understanding-selinux-policies-in-linux/
https://aws.amazon.com/bottlerocket/
https://access.redhat.com/products/red-hat-enterprise-linux
https://www.centos.org/download/
https://docs.docker.com/engine/

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

 9

Note: AWS recommends assigning a unique MCS label for each Pod in a
cluster. There are edge cases in which MCS labels are not automatically
applied, such as when a container has the hostPID flag enabled.

Privileged Pod processes have an SELinux label:
(system_u:system_r:spc_t:s0) that allows them full access to the

container host. Therefore, it remains necessary to supplement SELinux
with additional controls that prevent creating privileged pods or enabling
the hostPID flag.

The AWS VPC Container Networking (CNI) controller must be run in
privileged mode on nodes running SELinux.

Use admission controllers to enforce security policies

Admission controllers are a powerful feature in Kubernetes. These controllers intercept

requests to create new objects or mutate existing objects in a cluster, and take one or

more actions. Admission controllers can modify a request to conform to a designated

policy (a “mutating webhook”), or they can reject a request altogether (a “validating

webhook”).

AWS recommends that customers running multi-tenant clusters implement one or both

of the following security policy enforcement mechanisms.

Pod Security Policies (PSPs)

Every EKS cluster comes with a built-in admission controller capable of enforcing Pod

Security Policies (PSPs). These policies are ordinary Kubernetes objects that a cluster

administrator can create. For details, see Pod Security Policies.

Here is an example of a policy that forbids running privileged Pods:

apiVersion: policy/v1beta1

kind: PodSecurityPolicy

metadata:

 name: DisallowPrivilegedPods

spec:

 privileged: false

 # The rest fills in some required fields.

 seLinux:

 rule: RunAsAny

 supplementalGroups:

 rule: RunAsAny

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#mutatingadmissionwebhook
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#validatingadmissionwebhook
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#validatingadmissionwebhook
https://kubernetes.io/docs/concepts/policy/pod-security-policy/

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

 10

 runAsUser:

 rule: RunAsAny

 fsGroup:

 rule: RunAsAny

 volumes:

 - '*'

A more complex policy can be found in the Appendix of this document. This policy does

the following:

• Disallows privileged pods

• Disallows privilege escalation

• Requires all capabilities be dropped

• Forbids host volumes from being mounted

• Forbids using host networking, Inter-Process Communication (IPC) with the

host, and using host process IDs (PIDs)

• Forbids running as root

• Requires a default Seccomp profile

By default, EKS provides an unrestricted Pod Security Policy. AWS recommends

removing the default cluster role binding of the eks.privileged policy to all

authenticated users. You can do this by editing the

eks:podsecuritypolicy:authenticated cluster role binding to remove the

system:authenticated group from the subject list. If you have created an alternative

administrator group for your cluster, you can replace the system:authenticated

group with your administrator group instead:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: eks:podsecuritypolicy:authenticated

 annotations:

 kubernetes.io/description: 'Allow all authenticated users to

create privileged pods.'

 labels:

 kubernetes.io/cluster-service: "true"

 eks.amazonaws.com/component: pod-security-policy

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: eks:podsecuritypolicy:privileged

subjects:

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

 11

 - kind: Group

 apiGroup: rbac.authorization.k8s.io

 # Replace this with your administrator group name

 name: system:authenticated

WARNING: Be careful when making these or other changes to your
cluster. They may prevent you from creating new pods until replacement
policies, appropriate roles, and/or role bindings are created.

Open Policy Agent (OPA)

Open Policy Agent (OPA) is a powerful, open-source general-purpose policy agent. At

its core, OPA evaluates configurations against a set of rules you define, using a

domain-specific language called Rego. Although OPA is flexible enough to work with

just about any kind of structured data, it is most frequently used to enforce policies

inside Kubernetes clusters.

OPA is capable of providing much more extensive policy management than a Pod

Security Policy. PSPs are limited to Pods, while OPA can manage nearly any kind of

Kubernetes object. And while PSPs are only able to apply a limited set of policies to a

pod, OPA can apply powerful validators such as pattern matchers to any field in an

object. For example, with OPA, you can also require that all container images be pulled

from a trusted image repository.

The following is an example of a Rego policy that prohibits the creation of privileged

containers:

package kubernetes.admission

deny[message] {

 # match only if a Pod is being created

 input.request.kind.kind == "Pod"

 # examine each container

 container := input.request.object.spec.containers[_]

 # match if privileged is set

 container.securityContext.privileged

 message := sprintf("Container %v runs in privileged mode.",

[container.name])

}

https://www.openpolicyagent.org/docs/latest/policy-language/

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

 12

OPA is rapidly evolving. Customers can choose from several different implementations

to run in their EKS clusters. Kube-mgmt is the original implementation and is still widely

used. Gatekeeper is the newest implementation and has a powerful template-based

configuration model.

Conclusion

Multiple approaches and methods exist to secure multi-tenant workloads in Amazon

EKS clusters. The best way to ensure complete separation of mutually-untrusted

workloads is by operating a dedicated EKS cluster for each tenant. Nevertheless, there

are many mitigating controls you can apply that can help you achieve a higher level of

security for multi-tenant workloads on a shared cluster.

New techniques for improving container isolation are on the horizon. Technologies such

as Firecracker (an AWS-built open-source lightweight virtual machine manager) and

Bottlerocket (an AWS-built open-source container-oriented Linux distribution) are

undergoing development. Eventually, AWS expects these technologies to be

incorporated into production-grade solutions for AWS customers running siloed multi-

tenant workloads on Kubernetes. AWS will provide updates as these solutions become

available.

Appendix: strict pod security policy for an

untrusted tenant

apiVersion: policy/v1beta1

kind: PodSecurityPolicy

metadata:

 name: Tenant

 annotations:

 seccomp.security.alpha.kubernetes.io/allowedProfileNames:

'docker/default,runtime/default'

 seccomp.security.alpha.kubernetes.io/defaultProfileName:

'runtime/default'

spec:

 privileged: false

 # Required to prevent escalations to root.

 allowPrivilegeEscalation: false

 # This is redundant with non-root + disallow privilege

escalation,

 # but we can provide it for defense in depth.

 requiredDropCapabilities:

https://github.com/open-policy-agent/kube-mgmt
https://github.com/open-policy-agent/gatekeeper
https://firecracker-microvm.github.io/
https://aws.amazon.com/bottlerocket/

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

 13

 - ALL

 # Allow core volume types.

 volumes:

 - 'configMap'

 - 'emptyDir'

 - 'projected'

 - 'secret'

 - 'downwardAPI'

 # Assume that persistentVolumes set up by the cluster admin are

safe to use.

 - 'persistentVolumeClaim'

 hostNetwork: false

 hostIPC: false

 hostPID: false

 runAsUser:

 # Require the container to run without root privileges.

 rule: 'MustRunAsNonRoot'

 seLinux:

 # This policy assumes the nodes are using AppArmor rather than

SELinux.

 rule: 'RunAsAny'

 supplementalGroups:

 rule: 'MustRunAs'

 ranges:

 # Forbid adding the root group.

 - min: 1

 max: 65535

 fsGroup:

 rule: 'MustRunAs'

 ranges:

 # Forbid adding the root group.

 - min: 1

 max: 65535

Contributors

Contributors to this document include:

• Michael Fischer, Senior Specialist Solutions Architect (Containers), Amazon

Web Services

• Tod Golding, Principal Partner Solutions Architect (SaaS), Amazon Web

Services

Amazon Web Services Security Practices for Multi-Tenant SaaS Applications using Amazon EKS

 14

Document revisions

Date Description

June 4, 2021 First publication

	Overview
	Recommendations
	Use multiple clusters to separate tenant workloads
	Use tenant-dedicated Worker nodes
	AWS Fargate
	Amazon EC2 Worker nodes

	Node Authorization Mode
	Do not provide direct access to Kubernetes or EKS APIs
	Use Namespaces to separate tenant workloads
	Restrict container privileges
	Forbid running tenant containers as root
	Restrict mounting host filesystems
	Restrict the use of host networking and block access to instance metadata service
	Restrict creation of services with external IP addresses
	Apply a Seccomp profile to containers
	Apply SELinux profiles to containers
	Use admission controllers to enforce security policies
	Pod Security Policies (PSPs)
	Open Policy Agent (OPA)

	Conclusion
	Appendix: strict pod security policy for an untrusted tenant
	Contributors
	Document revisions

